Part Number Hot Search : 
ALVCH16 MCA235 TC390CL BUZ10 M358D 50N60 MBR1535 21B33
Product Description
Full Text Search
 

To Download BA7622F09 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 High-performance Video Driver Series
Standard 3-output Video Driver
BA7622F, BA7623F
No.09065EAT04
Description The BA7622F and BA7623F are video driver ICs with three built-in circuits, developed for video equipment. The three circuits in the BA7622F, two sync-tip clamp inputs and one bias input, are terminated by internal resistances of 20 k. The BA7623F output pins cab be connected directly in a DC coupling mode. Each output can drive 2 lines of load (75x2). Suitable to connect to a 2Vpp output type signal processing LSI and DAC.
Features Common 1) 2 lines can be driven from each output 2) Can be operated by Vcc=4.5 V BA7622F 1) Large output dynamic range (3.3 Vpp, Vcc=5 V) 2) Built-in, 2 clamp input circuits and1 bias input circuit 3) Y signal, C signal, and composite video signal can be driven simultaneously by this particular IC. BA7623F 1) Wide output dynamic range (3.3 Vpp, Vcc=5 V) 2) Can be directly connected to previous stage circuit
Applications TV, VCR, camcorder, and other video equipment.
Product lineup Parameter Input pin configuration
BA7622F 2 clamp input circuits 1 bias input circuit
BA7623F Previous stage direct connection (Base direct input)
Absolute maximum ratingsTa=25
Parameter Supply voltage Power dissipation Operating temperature Storage temperature 25C
Symbol VMax Pd Topr Tstg
Limits 8.0 550 *1 -25+75 -55+125
Unit V W
*1
Reduce by 5.5 mW/C over
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
1/16
2009.04 - Rev.A
BA7622F, BA7623F
Operating range (Ta=25) Parameter Symbol Limits Supply Voltage VCC 4.55.5 Note: This IC is not designed to be radiation-resistant.. Unit V
Technical Note
Electrical characteristics (Unless otherwise specified, Ta=25, Vcc=5 V and 2 lines are driven.) BA7622F Parameter Symbol Min. Typ. Max Unit Conditions Circuit Current Icc 23.6 35.4 mA No signal Maximum output level Vom 2.8 3.3 Vp-p f=1kHz,THD=1.0% Voltage gain Gv -1.2 -0.6 0 dB f=1kHz,VIN=2.0Vp-p Frequency characteristic Gf -3 0 1.3 dB 10kHz/1MHz, VIN=1.0Vp-p Differential gain 75drive1 DG1 0.4 1.0 % VIN=2.0Vp-p,Standard staircase signal Differential phase 75drive1 DP1 0.4 1.0 deg VIN=2.0Vp-p, Standard staircase signal Differential gain 75drive2 DG2 0.7 2.0 % VIN=2.0Vp-p, Standard staircase signal Differential phase 75drive2 DP2 0.7 2.0 deg VIN=2.0Vp-p, Standard staircase signal Interchannel crosstalk CT -60 dB f=4.43MHz, VIN=2.0Vp-p Input impedance(VIN3) ZIN3 17 20 23 k Total harmonic distortion(VIN3) f=1kHz,VIN=1.0Vp-p THD32 0.1 0.5 % BA7623F Parameter Circuit Current Maximum output level Voltage gain Frequency characteristics Differential gain 75drive1 Differential phase 75drive1 Differential gain 75drive2 Differential phase 75drive2 Interchannel crosstalk Total harmonic distortion Symbol Icc Vom Gv Gf DG1 DP1 DG2 DP2 CT THD Min. 2.9 -1.0 -3 Typ. 25.2 3.4 -0.5 0 0.4 0.4 0.7 0.7 -60 0.1 Max 37.8 0 1 1.0 1.0 2.0 2.0 0.5 Unit mA Vp-p dB dB % deg % deg dB % Conditions No signal f=1kHz,THD=1.0% f=1kHz,VIN=2.0Vp-p 10kHz/1MHz, VIN=1.0Vp-p VIN=2.0Vp-p, Standard staircase signal VIN=2.0Vp-p, Standard staircase signal VIN=2.0Vp-p, Standard staircase signal VIN=2.0Vp-p, Standard staircase signal f=4.43MHz, VIN=2.0Vp-p f=1kHz,VIN=1.0Vp-p
Block diagram
GND
1
75 driver
8
OUT1
GND
1
75 driver
8
OUT1
IN1
2 Clamp
75 driver
7
OUT2
IN1
2
75 driver
7
OUT2
IN2
3
Clamp 20k
75 driver
6
OUT3
IN2
3
75 driver
6
OUT3
IN3
4
Bias
5
VCC
IN3
4
5
VCC
Fig.1 BA7622F
Fig.2 BA7623F
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
2/16
2009.04 - Rev.A
BA7622F, BA7623F
Measurement circuit
Technical Note
Vector Scope
Analyzer Audio
Vector Scope
Analyzer Audio
Vector Scope
Analyzer Audio
V ~ 1 SWD 2 3 SWE 1 2
V ~ 3 SWF 1
V ~ 2 3 VCC 5V
+
47F 1
75 driver
0.022 F
8
+
75 75
470 75
2
Clamp
75 driver
7
+ 470
75
They are shown in the figure below They are asas shown in the figurebelow when driving two 75 loads. when driving two 75 loads.
+ 1000 75 75 75 75
3
20k
Clamp
75 driver
6
+ 75 470
75
4
Bias
5
VCC5V
SWA 1 2 3 4 SWB 1 2 3 4
5V V CC SWC 1 2 3 4
5V V CC
+
+
600
+
1 1 1
200A +
+
600
+
1 1 1
200A +
+
600
+
1 1 1
50A
~
OSC
~
SG
V
~
OSC
~
SG
V
~
OSC
~
SG
V
Fig.3 BA7622F
Vector Scope
Analyzer Audio
Vector Scope
Analyzer Audio
Vector Scope
Analyzer Audio
V ~ 1 SWD 2 3 SWE 1
V ~ 2 3 SWF 1
V ~ 2 3 VCC5V
+
47F 1
75 driver
0.022F
8
+ 75 470 + 470
75
75
2
75 driver
7
75
3
75 driver
6
+ 75 470
They are as shown in the 1 75 figure below when driving two 75 loads. 75 2
+ 1000 75 75 75 75
75
4
5
SWA 1 + 1 600 1k
SWB 2 + 1
1k
3 + 1
1k 2.1V
1 + 1 600 1k
2 +
3 + 1
1k
SWC 1 + 1
1k 2.1V
2 +
3 + 1
1k
1 600 1k
1
1k 2.1V
~
OSC
2.1V
~
SG
2.1V
~
OSC
2.1V
~
SG
2.1V
~
OSC
2.1V
~
SG
2.1V
Fig.4 BA7623F
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
3/16
2009.04 - Rev.A
BA7622F, BA7623F
Measurement methods and conditions (BA7622F)
Parameter Circuit current Maximum output level Symbol Icc Vom12 Vom22 Vom32 Gv12 Gv22 Gv32 f12 f22 f32 CT112 CT113 CT211 CT213 CT311 CT312 ZIN3 THD12 THD22 THD32 IN1 SWA 3 1 3 3 1 3 3 1 3 3 1 1 3 3 3 3 3 1 3 3 IN2 SWB 3 3 1 3 3 1 3 3 1 3 3 3 1 1 3 3 3 3 1 3 IN3 SWC 3 3 3 1 3 3 1 3 3 1 3 3 3 3 1 1 4 3 3 1 OUT1 SWD x 3 x x 3 x x 3 x x x x 3 x 3 x x 3 x x OUT2 SWE x x 3 x x 3 x x 3 x 3 x x x x 3 x x 3 x OUT3 SWF x x x 3 x x 3 x x 3 x 3 x 3 x x x x x 3
Technical Note
Conditions 1
Voltage gain
2
Frequency characteristic
-
Interchannel crosstalk
-
Input impedance Total harmonic distortion
3 4
xSwitches 1, 2, and 3 can be 1Maximum output level Connect a distortion meter to the output. Apply a f=1 kHz, 1 Vp-p sine wave to the input and adjust the input level so that the output distortion becomes 1.0%. The maximum output level Vom (Vp-p) is the output voltage at that time. 2Voltage gain Apply a f=1MHz, 2.0 Vp-p sine wave to the input.. The voltage gain GV=20log[VOUT/VIN] (dB). 3Input resistance Measure the input pin voltage VIN50, when 50 A is injected at the input pin. Measure the open voltage VIN0 of the input pin. The input resistance Z=( VIN50- VIN0)/50x10-6 []. 4Total harmonic distortion Apply a f=1kHz, 1.0 Vp-p sine wave to the input and measure by connecting a distortion meter to the output.
Measurement methods and conditions (BA7623F)
Parameter Circuit current Maximum output level Symbol Icc Vom12 Vom22 Vom32 Gv12 Gv22 Gv32 f12 f22 f32 CT112 CT113 CT211 CT213 CT311 CT312 THD12 THD22 THD32 DG1 DG2 DG3 DP1 DP2 DP3 IN1 SWA 3 1 3 3 1 3 3 1 3 3 1 1 3 3 3 3 1 3 3 2 3 3 2 3 3 IN2 SWB 3 3 1 3 3 1 3 3 1 3 3 3 1 1 3 3 3 1 3 3 2 3 3 2 3 IN3 SWC 3 3 3 1 3 3 1 3 3 1 3 3 3 3 1 1 3 3 1 3 3 2 3 3 2 OUT1 SWD x 3 x x 3 x x 3 x x x x 3 x 3 x 3 x x 1 x x 1 x x OUT2 SWE x x 3 x x 3 x x 3 x 3 x x x x 3 x 3 x x 1 x x 1 x OUT3 SWF x x x 3 x x 3 x x 3 x 3 x 3 x x x x 3 x x 1 x x 1 Conditions 1
Voltage gain
2
Frequency characteristic
-
Interchannel crosstalk
Total harmonic distortion
3
Differential gain (DG)
-
Differential phase (DP)
-
xSwitches 1, 2, and 3 can be 1Maximum output level Connect a distortion meter to the output. Apply a f=1 kHz, 1 Vp-p sine wave to the input and adjust the input level so that the output distortion becomes 1.0%. The maximum output level Vom (Vp-p), is the output voltage at that time. 2Voltage gain Apply a f=1MHz, 2.0 Vp-p sine wave to the input. The voltage gain is calculated as follows: GV=20log[VOUT/VIN] (dB) 3Total harmonic distortion Apply a f=1kHz, 1.0 Vp-p sine wave to the input and measure by connecting a distortion meter to the output.
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
4/16
2009.04 - Rev.A
BA7622F, BA7623F
Application circuit
V CC5V
Technical Note
+ 47 F
0.022 F
75 1
75 driver
8
+ 1000F 75
VIDEO OUT1 VIDEO OUT2 Y C
Composite Video Signal
+ 1F
2
Clamp
75 driver
7
+ 1000F
75
Y Signal
+ 1F
3
Clamp 20k
75 driver
6
+ 1F
75
75
Y
C
C Signal 0.01 F
4
Bias
5
75
Example of input VIDEO ,Y , and C signals.
Fig.5 BA7622F
Vcc=5V
+ 47F 0.022F
75
1
R OUT R OUT2 G OUT G OUT2 B OUT1 B OUT
75 driver
8
+ 1000F
75 75
2
75 driver
7
+ 1000F + 1000F
75 75 75
3
75 driver
6
4
5
Example of input R, G, and B signals
Fig.6 BA7623F
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
5/16
2009.04 - Rev.A
BA7622F, BA7623F
Pin descriptions (1/2) BA7622F Pin No. Pin name IN OUT Typical voltage Equivalent Circuit
Technical Note
Function
GND terminal 1 GND 0V
GND GND
Clamp input pin
IN1,IN2
Inputs a video signal or Y/C separated Y signal.
Vcc
2
IN1
1.4V
Q1 Q2
N
N 100A
Clamp input pin
IN1,IN2
Inputs a video signal or Y/C separated Y signal.
Vcc Q1 Q2
3
IN2
1.4V
N
N 100A
Bias input pin
IN1,IN2
Inputs a chroma signal.
4
IN3
2.7V
Vcc Q1 Q2
N 20k
10k
N 100A
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
6/16
2009.04 - Rev.A
BA7622F, BA7623F
Technical Note
Pin No.
Pin name
IN
OUT
Typical voltage
Equivalent Circuit
VCC
Function
Vcc terminal
5
VCC
5.0V
VCC
Video driver output (Bias input)
Vcc Q4 20K OUT1 3 Q3
Outputs a chroma signal.
6
OUT3
2.0V
Q1
Q2
Q5
When output is forced to ground, the protection circuit activates power save mode.
Vcc Q4 20K OUT1 3 Q3
Video driver output pin (Clamp input) Outputs a video signal or Y/C separated Y signal
7
OUT2
0.6V
Q2
Q1
Q5
When output is forced to ground, the protection circuit activates power save mode.
Video driver output pin (Clamp input)
Vcc Q4 20K OUT1 3 Q3
Outputs a video signal or Y/C separated Y signal
8
OUT1
0.6V
Q1
Q2
Q5
When output is forced to ground, the protection circuit activates power save mode.
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
7/16
2009.04 - Rev.A
BA7622F, BA7623F
Pin descriptions (2/2) BA7623F Pin No.
Technical Note
Pin name
IN
OUT
Typical voltage
Equivalent Circuit
Function
GND terminal
1
GND
0V
GND GND
Base direct connect input
IN1 IN3 Vcc 100A 100A
2
IN1
1
Set the input signal as composite video signal, chroma signal, or RGB signal. Input signal range 0.5 3.8 V.
300A 300A
IN1 IN3
Base direct connect input pin
100A 100A
Vcc
3
IN2
1
300A
300A
Set the input signal as composite video signal, chroma signal, or RGB signal. Input signal range 0.5 3.8 V.
IN1 IN3
Base direct connect input pin
100A 100A
Vcc
4
IN3
1
300A
300A
Set the input signal as composite video signal, chroma signal, or RGB signal. Input signal range 0.5 3.8 V.
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
8/16
2009.04 - Rev.A
BA7622F, BA7623F
Technical Note
Pin No. 5
Pin name VCC
IN
OUT
Typical voltage 5.0V
Vcc
Equivalent Circuit
VCC
Function
VCC
Vcc terminal Video driver output (Base direct connect input)
20K OUT1 3
Q4
Q3
6
OUT3
2
Q2
Q1
2 Output potential and 1 input potential have the same signal level. When output is forced to ground, the protection circuit activates power save mode. Video driver output (Base direct connect input)
Q5
Vcc Q4 20K OUT1 3 Q3
7
OUT2
2
Q2
Q1
2 Output potential and 1 input potential have the same signal level.
Q5
When output is forced to ground, the protection circuit activates power save mode.
Q4 20K OUT1 3 Q3
Vcc
Video driver output (Base direct connect input) 2 Output potential and 1 input potential have the same signal level. When grounded to ground, the protection circuit operates to move to power save mode.
8
OUT1
2
Q2
Q1
Q5
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
9/16
2009.04 - Rev.A
BA7622F, BA7623F
Operation Notes 1. 2.
Technical Note
Numbers and data in entries are representative design values and are not guaranteed values of the items. Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow for sufficient margins when determining circuit constants. Absolute maximum ratings Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded. GND potential Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND at any time, regardless of whether it is a transient signal or not. Thermal design Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation (Pd) in actual states of use. Short circuit between terminals and erroneous mounting Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other components on the circuits, can damage the IC. Operation in strong electromagnetic field Using the ICs in a strong electromagnetic field can cause operation malfunction.
3.
4.
5.
6.
7.
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
10/16
2009.04 - Rev.A
BA7622F, BA7623F
Reference data (1/5)
80 CIRCUIT CURRENT:Icc[mA]
Technical Note
BA7623F
MAXIMUM OUTPUT LEVEL:Vom[Vpp] .
6
BA7623F VCC=5V
MAXIMUM OUTPUT LEVEL:Vom[Vpp]
6
BA7623F Ta=25
60
-25C
5
5
40
25C 75C
4
4
20
3
3
0 4 5 6 7 8 POWER SUPPLY VOLTAGE:Vcc[V]
2 -50 0 50 TEMPERATURETa.[] 100
2 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE:Vcc[V]
Fig.7 Circuit current vs. Supply voltage
5 VOLTAGE GAIN:Gv[dB] BA7623F VCC=5V
Fig.8 Maximum output level vs. Temperature
5
Fig.9 Maximum output level vs. Supply voltage
1 DIFFERENTIAL GAIN : DG[%]
BA7623F Ta=25
BA7623F VCC=5V
VOLTAGE GAIN:Gv[dB]
0
0
0.8
2Drive
-5
-5
0.6
-10
-25C 25C 75C
-10
4.5V 5.0V
0.4
-15
-15
5.5V
0.2
1Drive
-20 0.1 1 10 100 INPUT FREQUENCY:fin[MHz]
-20 0.1 1 10 100 INPUT FREQUENCY:fin[MHz]
0 -50 0 50 TEMPERATURE : Ta[] 100
Fig.10 Frequency characteristic vs. Temperature
DIFFERENTIAL PHASE : DP[deg]
Fig.11 Frequency characteristic vs. Supply voltage
DIFFERENTIAL PHASE : DP[deg]
0.6
Fig.12 Differential gain vs. Temperature
0.6
1 DIFFERENTIAL GAIN : DG[%]
BA7623F Ta=25
BA7623F VCC=5V
BA7623F
Ta=25
0.8
0.4
0.4
0.6
2Drive
2Drive
0.2
2Drive
0.2
0.4
1Drive
1Drive
0
1Drive
0
0.2
0 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V]
-0.2 -50 0 50 100 TEMPERATURE : Ta[]
-0.2 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V]
Fig.13 Differential gain vs. Supply voltage
84 Y SYSTEM S/N : SNY[dB]
Fig.14 Differential phase vs. Temperature
84 Y SYSTEM S/N : SNY[dB]
Fig.15 Differential phase vs. Supply voltage
85.0
C SYSTEM AM S/N : SNCA[dB]
BA7623F VCC=5V
BA7623F Ta=25
BA7623F VCC=5V
83.5
83.5
80.0
2Drive
83
83
2Drive
75.0
82.5
1Drive
82.5
1Drive
70.0
82 -50 0 50 100 TEMPERATURE : Ta[]
82 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V]
65.0 -50 0 50 TEMPERATURE : Ta[] 100
Fig.16 Y system S/N vs. Temperature
Fig.17 Y system S/N vs. Supply voltage
Fig.18 C system AM S/N vs. Temperature
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
11/16
2009.04 - Rev.A
BA7622F, BA7623F
Reference data (2/5)
85 C SYSTEM AM S/N : SNCA[dB]
Technical Note
BA7623F Ta=25
75 C SYSTEM PM S/N : SNCP[dB]
BA7623F VCC=5V
75 C SYSTEM PM S/N : SNCP[dB]
BA7623F Ta=25
80
70
2Drive
70
2Drive
65
75
65
1Drive
1Drive
60
70
60
65 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V]
55 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V]
55 -50 0 50 100 TEMPERATURE : Ta[]
Fig.19 C system AM S/N vs. Supply voltage
-55
Fig.20 C system PM S/N vs. Supply voltage
-55
Fig.21 C system PM S/N vs. Temperature
TOTAL HARMONIC DISTORTION:THD[%] . 0.5
BA7623F VCC=5V
BA7623F
Ta=25
BA7623F VCC=5V
CROSS TALK : CT[dB] .
CROSS TALK:CT[dB] .
-57
-57
0.4
-59
-59
0.3
-61
-61
0.2
-63
-63
0.1
-65 -50 0 50 100 TEMPERATURE:Ta[]
-65 4 4.5 5 5.5 6 POW ER SUPPLY VOLTAGE:VCC[V]
0 -50 0 50 TEMPERATURE:Ta[] 100
Fig.22 Cross talk vs. Temperature
TOTAL HARMONIC DISTORTION:THD[%] . 0.5
Fig.23 Cross talk vs. Supply voltage
80 CIRCUIT CURRENT : Icc[mA]
Fig.24 Total harmonic distortion vs. Temperature
MAXIMUM OUTPUT LEVEL Vom[Vpp] .
6
BA7623F Ta=25
BA7622F Ta=25
BA7622F VCC=5V
0.4
60
-25C 25C 75C
5
0.3
40
4
0.2
0.1
20
3
0 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE:VCC[V]
0 4 5 6 7 8 POWER SUPLLY VOLTAGE : Vcc(V)
2 -50 0 50 100 TEMPERATURE : Ta[]
Fig.25 Total harmonic distortion vs. Supply voltage
6.0 MAXIMUM OUTPUT LEVEL : Vom[Vpp] BA7622F Ta=25
Fig.26 Circuit current vs. Supply voltage
5 MAXIMUM OUTPUT LEVEL : Vom[Vpp] BA7622F VCC=5V
Fig.27 Maximum output level vs. Temperature
BA7622F Ta=25
5
5.0
4
MAXIMUM OUTPUT LEVEL : Vom[Vpp]
4
4.0
3
3
3.0
2
2
2.0 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V]
1 -50 0 50 100 TEMPERATURE : Ta[]
1 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V]
Fig.28 Maximum output level (clamp) vs. Supply voltage
Fig.29 Maximum output level (bias) vs. Temperature
Fig.30 Maximum output level (bias) vs. Supply voltage
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
12/16
2009.04 - Rev.A
BA7622F, BA7623F
Reference data (3/5)
10 5 VOLTAGE GAIN:Gv[dB] VOLTAGE GAIN:Gv[dB] 0 -5 -10 -15 -20 -25 0.1 1 10 100 INPUTFREQUENCY:fin[MHz]
-25C 25C 75C
Technical Note
BA7622F
VCC=5V
10 5
BA7622F
Ta=25
10 5 VOLTAGE GAIN:Gv[dB] 0 -5 -10 -15 -20 -25
BA7622F VCC=5V
0 -5 -10 -15 -20 -25 0.1 1 10 100 INPUT FREQUENCY:finMHz)
5.5V 4.5V 5.0V
-25C 25C 75C
0.1
1
10
100
INPUT FREQUENCY:fin[dB]
Fig.31 Frequency characteristic (clamp) vs. Temperature
10 5 VOLTAGE GAIN:Gv[dB] 0 -5 -10 -15
5.0V
Fig.32 Frequency characteristic (clamp) vs. Supply voltage
1 DIFFERENTIAL GAIN : DG[%] .
Fig.33 Frequency characteristic (bias) vs. Temperature
1 DIFFERENTIAL GAIN : DG[%] . BA7622F Ta=25
BA7622F Ta=25
BA7622F
VCC=5V
0.8
0.8
0.6
0.6 2Drive 0.4 1Drive 0.2
0.4
2Drive
0.2
1Drive
-20 -25 0.1 1
4.5V 5.5V
0 10 100 -50 0 50 TEMPERATURE : Ta[] 100
0 4 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V]
INPUT FREQUENCY [MHz]
Fig.34 Frequency characteristic (bias) vs. Supply voltage
1 DIFFERENTIAL GAIN : DG[%] .
Fig.35 Differential gain (clamp) vs. Temperature
1 DIFFERENTIAL GAIN : DG[%] .
Fig.36 Differential gain (clamp) vs. Supply voltage
1 DIFFERENTIAL PHASE : DP[deg] .
BA7622F VCC=5V
BA7622F Ta=25
BA7622F VCC=5V
0.8
0.8
0.8
0.6
2Drive
0.6
0.6
2Drive
2Drive
0.4
0.4
1Drive
0.4
1Drive
0.2
0.2
0.2
1Drive
0 -50 0 50 100 TEMPERATURE : Ta[]
0 4 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V]
0 -50 0 50 100 TEMPERATURE[ : Ta]
Fig.37 Differential gain (bias) vs.Temperature
1 DIFFERENTIAL PHASE : DP[deg] .
Fig.38 Differential gain (bias) vs. Supply voltage
1
BA7622F VCC=5V
DIFFERENTIAL PHASE : DP[deg] . 1
Fig.39 Differential phase (clamp) vs. Temperature
BA7622F Ta=25
BA7622F
Ta=25
0.8
0.8
0.8
0.6
0.6
2Drive 2Drive
0.6
0.4
0.4
0.4
0.2
1Drive
2Drive
0.2
0.2
1Drive
1Drive
0 4 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V]
0 4 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V]
0 -50 0 50 100 TEM PERATURE : Ta[]
Fig.40 Differential phase (clamp) vs. Supply voltage
Fig.41 Differential phase (bias) vs. Temperature
Fig.42 Differential phase (bias) vs. Supply voltage
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
13/16
2009.04 - Rev.A
BA7622F, BA7623F
Reference data (4/5)
90 Y SYSTEM S/N : SNY[dB] .
BA7622F VCC=5V
Technical Note
90
BA7622F
Ta=25
90 Y SYSTEM S/N : SNY[dB] .
BA7622F VCC=5V
Y SYSTEM S/N : SNY[dB] .
88
88
88
86
86
86
84
2Drive 1Drive
84
2Drive 1Drive
84
2Drive 1Drive
82
82
82
80 -50 0 50 100 TEMPERATURE : Ta[]
80 4 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V]
80 -50 0 50 100 TEMPERATURE : Ta[]
Fig.43 Y system S/N (clamp) vs. Temperature
90 Y SYSTEM S/N : SNY[dB] .
Fig.44 Y system S/N (clamp) vs. Supply voltage
85 C SYSTEM AM S/N : SNCA[dB]
BA7622F VCC=5V
C SYSTEM AM S/N : SNCA[dB] . 85
Fig.45 Y system S/N (bias) vs. Temperature
BA7622F Ta=25
BA7622F Ta=25
88
80
80
86
75
75
84
2Drive 1Drive
70
82
70
80 4 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V]
65 -50 0 50 100 TEMPERATURE : Ta[]
65 4 4.5 5 5.5 6 POW ER SUPLLY VOLTAGE : Vcc[V]
Fig.46 Y system S/N (bias) vs. Supply voltage
85 C SYSTEM AM S/N : SNCA[dB]
Fig.47 C system AM S/N (clamp) vs. Temperature
85 C SYSTEM AM S/N : SNCA[dB]
Fig.48 C system AM S/N (clamp) vs. Supply voltage
75 C SYSTEM PM S/N : SNCP[dB] .
BA7622F VCC=5V
BA7622F
VCC=5V
BA7622F
Ta=25
80
80
70
75
75
65
70
70
60
65 -50 0 50 100 TEMPERATURE : Ta[]
55
65 4 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V]
-50
0 50 TEMPERATURE : Ta[]
100
Fig.49 C system AM S/N (bias) vs. Temperature
67 C SYSTEM PM S/N : SNCP[dB] .
BA7622F Ta=25
75
Fig.50 C system AM S/N (bias) vs. Supply voltage
BA7622F VCC=5V 75 C SYSTEM PM S/N : SNCP[dB
Fig.51 C system PM S/N (clamp) vs. Temperature
BA7622F Ta=25
67
70
70 2Drive 65
66
2Drive
65
1Drive
66
1Drive
60
60
65 4 4.5 5 5.5 POWER SUPLLY VOLTAGE : Vcc[V] 6
55 -50 0 50 TEM PERATURE : Ta[] 100
55 4 4.5 5 5.5 6 POWER SUPLLY VOLTAGE : Vcc[V]
Fig.52 C system PM S/N (clamp) vs. Supply voltage
Fig.53 C system PM S/N (bias) vs. Temperature
Fig.54 C system PM S/N (bias) vs. Supply voltage
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
14/16
2009.04 - Rev.A
BA7622F, BA7623F
Reference data (5/5)
BA7622F VCC=5V
Technical Note
-55.00 -57.00 -59.00 -61.00 -63.00 -65.00 -50 0 50 100 TEMPERATURE : Ta[]
BA7622F
-55
Ta=25
30.0 INPUT IMPEDANCE : Zin[k]
BA7622F
VCC=5V
CROSS TALK : Cr[dB]
CROSS TALK : Cr[dB] .
-57
25.0
-59
20.0
-61
15.0
-63
-65 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc [V]
10.0 -50 0 50 TEMPERATURE : Ta[] 100
Fig.55 Cross talk vs. Temperature
30.0
BA7622F Ta=25
Fig.56 Cross talk vs. Supply voltage
0.5
Fig.57 Input impedance vs. Temperature
BA7622F Ta=25
TOTAL HARHONIC DISTORTION:THD[%] . 0.5
BA7622F
VCC=5V
TOTAL HARHONIC DISTORTION:THD[%] .
25.0 INPUT IMPEDANCE : Zin[k]
0.4
0.4
0.3
0.3
20.0
0.2
0.2
15.0
0.1
0.1
10.0 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc [V]
0 -50 0 50 100 TEMPERATURE : Ta[]
0 4 4.5 5 5.5 6 POW ER SUPPLY VOLTAGE : Vcc[V]
Fig.58 Input impedance vs. Supply voltage
TOTAL HARHONIC DISTORTION:THD[%] . 0.5 BA7622F VCC=5V
Fig.59 Total harmonic distortion (clamp) vs. Temperature
TOTAL HARHONIC DISTORTION:THD[%] . 0.5
Fig.60 Total harmonic distortion (clamp) vs. Supply voltage
5 INPUT TERMINAL VOLTAGE[V] .
BA7622F
Ta=25
BA7622F
VCC=5V
0.4
0.4
4
0.3
0.3
3
bias
0.2
0.2
2
clamp
1
0.1
0.1
0 -50 0 50 100 TEMPERATURE : Ta[]
0 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V]
0 -50 0 50 100 TEMPERATURE : Ta[]
Fig.61 Total harmonic distortion (bias) vs. Temperature
5 INPUT TERMINAL VOLTAGE[V]
Fig.62 Total harmonic distortion (bias) vs. Supply voltage
4 OUTPUT TERMINAL VOLTAGE[V] . BA7622F VCC=5V OUTPUT TERMINAL VOLTAGE[V] . 4
Fig.63 Input terminal voltage vs. Temperature
BA7622F Ta=25
BA7622F Ta=25
4
3 bias 2
3 bias 2
3
bias
2
clamp
1
1
clamp
1
clamp
0 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V]
0 -50 0 50 TEMPERATURE : Ta[] 100
0 4 4.5 5 5.5 6 POWER SUPPLY VOLTAGE : Vcc[V]
Fig.64 Input terminal voltage vs. Supply voltage
Fig.65 Output terminal voltage vs. Temperature
Fig.66 Output terminal voltage vs. Supply voltage
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
15/16
2009.04 - Rev.A
BA7622F, BA7623F
Selection of order type
Technical Note
B
A
7
6
2
Part No.
2
F
E
2
Tape and Reel information
BA7622F BA7623F
SOP8

Tape Quantity
5.00.2
8 5
Embossed carrier tape 2500pcs E2
(Correct direction: 1pin of product should be at the upper left when you hold reel on the left hand, and you pull out the tape on the right hand)
6.20.3 4.40.2
1
4
0.150.1 0.1
1.50.1 0.11
1.27 0.40.1
0.3Min.
Direction of feed
1234
(Unit:mm)
Reel
1234
1234
1Pin
1234
1234
Orders are available in complete units only.
1234
Direction of feed
1234
1234
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
16/16
2009.04 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
R0039A


▲Up To Search▲   

 
Price & Availability of BA7622F09

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X